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Numerical simulations have been carried out to investigate the effects of the fluid electric conductivity
and non-uniform heat source (or sink) on two-dimensional steady hydromagnetic convective flow of
a micropolar fluid (in comparison with the Newtonian fluid) flowing along an inclined flat plate with
a uniform surface heat flux. The local similarity solutions are presented for the non-dimensional velocity
distribution, microrotation, and temperature profiles in the boundary layer. The significance of the
physical parameters on the flow field is discussed in detail. The results show that the values of the
skin-friction coefficient and the Nusselt number are higher for the case of constant fluid electric
conductivity compared with those for the variable fluid electric conductivity. The effect of temperature
dependent heat generation is much stronger than the effect of surface dependent heat generation. The
results also show that effects of the fluid electric conductivity and non-uniform heat generation in
a micropolar fluid are less pronounced than that in a Newtonian fluid.

� 2009 Elsevier Masson SAS. All rights reserved.
1. Introduction

Many transport processes that occur both in nature and in
industries involve fluid flows with combined heat and mass
transfer. Such flows are driven by the buoyancy effects arising from
the density variations caused by the variations in temperature and/
or species concentrations. A micropolar fluid contains rotating
micro-constituents that cause the fluid to exhibit non-Newtonian
behavior. Micropolar fluid models have been found useful in the
study of flows of exotic lubricants, colloidal suspensions, polymeric
fluids, liquid crystals, additive suspensions, body fluids, turbulent
shear flows and flows in capillaries and microchannels.
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Ariman et al. [1] have given an excellent review of the micro-
polar fluid model and its applications. Hoyt and Fabula [2] have
shown experimentally that the fluids containing minute polymeric
additives can reduce skin friction by 25–30%. This reduction was
explained with the theory of micropolar fluids. As shown by Power
[3], body fluids such as the fluid in the brain can also be adequately
modeled as micropolar fluids.

The free convective flow of the fluids with microstructure is of
considerable interest in applications such as liquid crystals, dilute
solutions of polymer fluids and many types of suspensions. In these
and many other situations, the fluid flow is driven by buoyancy
effects occurring in an extensive, uniform fluid flow. Convective
flow of micropolar fluids over flat, curved and wavy surfaces has
attracted much attention from researchers since the formulation of
the flow model by Eringen [4,5]. Many investigators have studied
and reported results for micropolar fluids. The notable contribu-
tions are from Ebert [6], Jena and Mathur [7], Soundalgekar and
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Nomenclature

Roman
B0 magnetic induction, [Wb m�2]
Cf local skin-friction coefficient
cp specific heat due to constant pressure, [J kg�1 K�1]
f dimensionless stream function
g0 acceleration due to gravity, [m s�2]
g dimensionless microrotation
j micro-inertia per unit mass, [m2]
M local magnetic field parameter
Mw plate couple stress, [Pa m]
Mx dimensionless plate couple stress
Nux local Nusselt number
n microrotation parameter
Pr Prandtl number
Q temperature dependent heat source (or sink)

parameter
Q* surface dependent heat source (or sink) parameter
qw surface heat flux, [W m�2]
Rex local Reynolds number
S coefficient of vortex viscosity, [Pa s]
Tw temperature at the surface of the plate, [K]
T temperature of the fluid within the boundary layer, [K]
TN temperature of the ambient fluid, [K]
UN free stream velocity, [m s�1]

u,v the x- and y-component of the velocity field, [m s�1]
x,y axes in direction along and normal to the plate, [m]

Greek
a angle of inclination [rad]
b* volumetric coefficient of thermal expansion, [K�1]
g local buoyancy parameter
r fluid density, [kg m�3]
m coefficient of dynamic viscosity, [Pa s]
y kinematic coefficient of viscosity, [m2 s�1]
ys spin-gradient viscosity, [m2 s�1]
s microrotation component normal to xy-plane, [s�1]
s00 electrical conductivity of the fluid [S m�1]
s0 magnetic permeability [N A�2]
j stream function, [m2 s�1]
x micro-inertia density parameter
h similarity variable
sw wall shear stress, [Pa]
Q surface temperature parameter
q dimensionless temperature
k thermal conductivity of fluid, [Wm�1 K�1]
D vortex viscosity parameter

Subscripts
w surface conditions
N conditions far away from the surface
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Takhar [8], Gorla and Takhar [9], Yucel [10], Gorla [11], Khonsari and
Brew [12], Khonsari [13], Gorla et al. [14], Gorla and Nakayam [15],
Char and Chang [16] and Raptis [17]. Rees and Pop [18] studied free
convection boundary layer flow of micropolar fluids from a vertical
flat plate whereas Desseaux and Kelson [19] studied the same flow
bounded by a stretching sheet. Mitarai et al. [20] studied collisional
granular flow with a micropolar fluid model. El-Arabawy [21]
studied effect of suction/injection on the flow of a micropolar fluid
past a continuously moving plate in the presence of radiation.
Rahman and Sattar [22] studied transient convective flow of
micropolar fluid past a continuously moving vertical porous plate
in the presence of radiation. Recently, Rahman and Sultana [23]
studied radiative heat transfer effects in a micropolar fluid flowing
past a vertical porous flat plate with variable surface heat flux.
Lately, Rahman [24] studied convective flows of micropolar fluids
from radiate isothermal porous surfaces with viscous dissipation
and Joule heating.

A number of free convective processes are also driven by heat
generation or absorption in the fluid. The heat generation or
absorption may be due to chemical reaction and/or dissociation
effects in the flowing fluid. The presence of heat generation or
absorption may alter the temperature distribution in the fluid
which in turn affects the particle deposition rate in systems such
as nuclear reactors, electronic chips, and semiconductor wafers.
The exact modeling of internal heat generation or absorption is
difficult but some simple mathematical models may express its
average behavior for most physical situations. Heat generation or
absorption has been assumed to be constant, space dependent or
temperature dependent. Vajravelu and Hadjinicolaou [25] studied
the heat transfer characteristics of the laminar boundary layer of
a viscous fluid over a stretching sheet with viscous dissipation or
frictional heating and temperature dependent internal heat
generation included in the analysis. Rahman and Sattar [26]
studied magnetohydrodynamic heat and mass transfer processes
from a plate with an oscillatory velocity and a constant heat
source. Molla et al. [27] studied natural convection flow along
a heated wavy surface with a temperature dependence heat
source. Mohammadein and Gorla [28] investigated heat transfer in
a micropolar fluid over a stretching sheet with viscous dissipation
and internal heat generation. Rahman and Sattar [29] studied
magnetohydrodynamic convective flow of a micropolar fluid past
a continuously moving vertical porous plate in the presence of
heat generation or absorption. Aforementioned studies include
only the effect of uniform heat generation or absorption i.e.
temperature dependent heat generation or absorption on heat
transfer. Abo-Eldahab and El-Aziz [30] have included the effect of
non-uniform heat source but confined to the case of viscous fluids
only.

Jones [31] investigated the free convection problem of a New-
tonian fluid over an inclined flat plate with a positive angle of
inclination. He developed two series solutions, one valid near the
leading edge and the other at large distances from the leading edge.
A step-by-step numerical solution was also obtained to cover the
intermediate region where neither series solutions applied. Garg
and Jayaraj [32] studied the effect of thermophoresis on aerosol
particles in laminar flow over an inclined plate. Alam et al. [33–37]
published a series of papers on inclined plate investigating the
effects of thermophoresis on the viscous flow models under various
flow conditions. All of the afore-mentioned works for the inclined
plate assumed a constant electric conductivity of the fluid. To the
best of our knowledge, the problem of a micropolar fluid of variable
electric conductivity flowing over an inclined plate with non-
uniform heat source (or sink) in the presence of uniform heat flux
boundary condition has remained unexplored.

In the present study we extend the work of Rahman and Sattar
[29] and analyze the flow of a variable electric conductivity
micropolar fluid with non-uniform heat source (or sink) over an
inclined impermeable flat plate subject to a uniform surface heat
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flux boundary condition. The resulting governing equations are
solved numerically to obtain the local similarity solutions. Graph-
ical results for non-dimensional velocity, microrotation and
temperature profiles including local skin-friction coefficient and
the local Nusselt number in tabular form are presented for a range
of values of the parameters characterizing the flow. The accompa-
nying discussion provides physical interpretations of the results.

2. Flow analysis

Consider a steady two-dimensional hydromagnetic laminar
convective flow of a viscous, incompressible, micropolar fluid along
a semi-infinite inclined impermeable flat plate with an acute angle
a to the vertical. The applied magnetic field is assumed to be in the
y-direction and varies in strength as a function of x and is defined
as:

B
! ¼ ð0;BðxÞÞ: (1)

The flow configurations and the coordinate system are shown in
Fig. 1.

The external electric field is assumed to be zero and the
magnetic Reynolds number is assumed to be small. Hence, the
induced magnetic field is small compared with the externally
applied magnetic field. The fluid of density (r) is quiescent (UN¼ 0)
and the convective motion is induced by the buoyancy forces. The
viscosity of the fluid (m) is assumed to be constant. The pressure
gradient, body forces, viscous dissipation and Joule heating effects
are neglected compared with the effect of internal heat source (or
sink).

Within the framework of the above-noted assumptions, the
convective flow of a steady incompressible micropolar fluid subject
to the Boussinesq approximation can be described by the following
conservation equations (see Rees and Pop [18], Rahman and Sattar
[29]):

Continuity Equation:

vu
vx
þ vv

vy
¼ 0; (2)
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Fig. 1. Flow configurations and the coordinate system.
Momentum Equation:

vu vu
�

S
�

v2u S vs

u

vx
þ v

vy
¼ yþ

r vy2 þ r vy
þ g0bðT � TNÞcosa

�
s=0ðBðxÞÞ

2u
r

; (3)

Angular Momentum Equation:

u
vs

vx
þ v

vs

vy
¼ ys

rj
v2s

vy2 �
S
rj

�
2sþ vu

vy

�
; (4)

Energy Equation:

rcp

�
u

vT
vx
þ v

vT
vy

�
¼ k

v2T
vy2 þ q000; (5)

where u,v are the velocity components along x,y co-ordinates
respectively, y¼ m/r is the kinematic viscosity, r is the mass density
of the fluid, m is the dynamic viscosity, ys¼ (mþ S/2)j (see Ahmadi
[38]) is the microrotation viscosity or spin-gradient viscosity, S is the
microrotation coupling coefficient (also known as the coefficient of
gyro-viscosity or the vortex viscosity), s is the microrotation
component normal to the xy-plane, j is the micro-inertia per unit
mass, T is the temperature of the fluid in the boundary layer, cp is the
specific heat of the fluid at constant pressure, k is the fluid thermal
conductivity, g0 is the acceleration due to gravity, b is the volumetric
coefficient of thermal expansion. In the present work, we assume
that the micro-inertia per unit mass j is a constant. The non-uniform
heat source/sink q000 [see [30]) is modeled as

q000 ¼ kU0

2yx

h
QðT � TNÞ þ Q*ðTw � TNÞe�h

i
; (6)

where Q and Q* are the coefficients of space and temperature
dependent heat source/sink respectively and TN is the temperature
of the fluid outside the boundary layer, h is defined in equation (12).
Here we note that the case Q> 0, Q*> 0 corresponds to heat source
and that Q< 0, Q*< 0 corresponds to heat sink.

For the flow under study, we assume that the strength of the
applied magnetic field B(x) is variable and has the form (see Helmy
[39]):

BðxÞ ¼ B0ffiffiffi
x
p ; where B0 is a constant: (7)

Moreover, the electrical conductivity s=0 is assumed to be
dependent on the velocity of the fluid and has the form (see Helmy
[39]):

s=0 ¼ s0u; where s0 is a constant: (8)

The term s=0ðBðxÞÞ
2u=r taking into account (7) and (8) can be

written as:

s=0ðBðxÞÞ
2u

r
¼

s0B2
0u2

rx
: (9)

Using equation (9), the momentum equation (3) can be written as:

u
vu
vx
þv

vu
vy
¼
�

yþS
r

�
v2u
vy2þ

S
r

vs

vy
þg0bðT�TNÞcosa�

s0B2
0u2

rx
: (10)

2.1. Boundary conditions

The appropriate boundary conditions for our model are

(i) On the plate surface (y¼ 0):
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u ¼ 0; v ¼ 0ðno-slip and impermeable wall conditionsÞ
(11a)
s ¼ �n
vu
vy
ðmicrorotation proportional to vorticityÞ

(11b)

and

vT
vy
¼ �qw

k
ðuniform surface heat fluxÞ (11c)

(ii) Matching with the quiescent free stream (y / N):

u ¼ UN ¼ 0; s ¼ 0; T ¼ TN; (11d)
where the subscripts w and N refer to the wall and boundary layer
edge, respectively. A linear relationship between the microrotation
function s and the surface shear vu/vy is chosen for investigating
the effect of different surface conditions for microrotation. When
microrotation parameter n¼ 0, we obtain s¼ 0 which represents
no-spin condition i.e. the microelements in a concentrated particle
flow-close to the wall are not able to rotate as stipulated by Jena and
Mathur [7]). The case n¼0.5 represents vanishing of the anti-
symmetric part of the stress tensor and represents weak concen-
tration. For this case Ahmadi [38]) suggested that in a fine particle
suspension, the particle spin is equal to the fluid velocity at the
wall. The case corresponding of n¼ 1 is representative of the
turbulent boundary layer flows (see Peddison and McNitt [40]).
2.2. Dimensionless equations

We introduce the following dimensionless variables:

h ¼ y

ffiffiffiffiffiffiffiffi
U0

2yx

r
;j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2yU0x

p
f ðhÞ; s ¼

ffiffiffiffiffiffiffiffi
U3

0
2yx

s
g; qðhÞ ¼ T � TN

Tw � TN

(12)

where j is the stream function, U0 is some reference velocity and
Tw � TN ¼ qw=k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2yx=U0

p
.

Since u¼ vj/vy and v¼�vj/vx we have from equation (12) that,

u ¼ U0f 0 and v ¼ �
ffiffiffiffiffiffiffiffi
yU0

2x

r �
f � hf 0

�
: (13)

Here f is non-dimensional stream function and prime denotes
differentiation with respect to h.

Now introducing equations (12) and (13) into equations (10) and
(4)–(5), we obtain,

ð1þ DÞf 000 þ ff 00 þ Dg0 þ gqcosa�Mf 02 ¼ 0; (14)

�
1þ 1

2
D
�

xg00 � 2D
�
2g þ f 00

�
þ x
�
f 0g þ g0f

�
¼ 0; (15)

q00 þ Pr
�
f q0 � f 0q

�
þ
�

Qqþ Q*e�h
�
¼ 0: (16)

where
D¼ S/m is the vortex viscosity parameter, x¼ jU0/yx is the micro-

inertia density parameter, g ¼ 2g0bxðTw � TNÞ=U2
0 is the buoyancy

parameter, M ¼ 2s0B2
0=r is the magnetic field parameter and

Pr¼ mcp/k is the Prandtl number.
The corresponding boundary conditions (11) become,

f ¼ f 0 ¼ 0; g ¼ �nf 00; q0 ¼ �1 at h ¼ 0;
f 0 ¼ 0; g ¼ 0; q ¼ 0 as h/N:

	
(17)

Because the parameters x and g depend on the coordinate x, the
solutions are locally similar. Such local similarity analyses have been
performed by many authors (see for example Raptis [17], El-Ara-
bawy [21], Rahman and Sattar [29], Alam et al. [33–37,41], Chamka
[42], Cortell [43,44], Hayat et al. [45] and Aziz [46]) and the results
found to be accurate. We treat equations (14)–(16) as ordinary
differential equations and solve them to derive locally similar
solutions for a range of values of the physical parameters charac-
terizing the flow.

2.3. Skin-friction coefficient and Nusselt number

The quantities of engineering interest are the skin-friction
coefficient and the Nusselt number. The local skin-friction coeffi-
cient is defined as

Cf ¼
�

2Re�1
x

�1
2½1þ ð1� nÞD�f 00ð0Þ; (18)

or;C*
f ¼ f 00ð0Þwhere C*

f ¼
Re1=2

xffiffiffi
2
p
½1þ ð1:0� nÞD�

Cf : (19)

The Nusselt number is given by

Nux ¼
�

2�1Rex

�1
2 1
qð0Þ; (20)

or; Nu*
x ¼

1
qð0Þwhere Nu*

x ¼
ffiffiffi
2
p

Re
�1
2 Nux: (21)

The numerical values of C*
f and Nu*

x are calculated from equations
(19) and (21), respectively.

3. Numerical solution

The set of equations (14)–(16) is highly nonlinear and coupled
and therefore the system cannot be solved analytically. The
nonlinear systems (14)–(16) with boundary conditions (17) are
solved using the Nachtsheim and Swigert [47] shooting iteration
technique. For a brief discussion of the Nachtsheim–Swigert
shooting iteration technique, the readers may also consult the work
of Rahman [24], Alam et al. [41]. Thus adopting this numerical
technique, a computer program was set up for the solutions of the
governing non-linear ordinary differential equations of our
problem with a sixth order Runge–Kutta method of integration.

3.1. Code verification

For viscous fluid flow (D¼ x¼ 0) and g¼ 0 equation (14) reduces
to the equation (6) of Cortell [48] and equation (8) of Hayat et al.
[45] if we replace our magnetic field parameter M by M¼ 2n/nþ 1
where n is the nonlinear stretching parameter (see Cortell [48]). To
assess the accuracy of the present code, we tabulate the values of
�f
00
(0) for a viscous fluid in Table 1 and compare them with the

numerical results reported by Cortell [48] and Hayat et al. [45].
Table 1 shows that the values produced by the present code and
those by Cortell [48] and Hayat et al. [45] are in good agreement.

It is also worth noting that for Q¼Q*¼ 0, equation (16) reduces
to the equation (27) of Cortell [43] if we put m¼ 13, k¼ 1.0, E=c ¼ 0
and s¼ 32Pr in his equation (27). For viscous fluid flow we have



Table 1
Comparison of the values of �f

00
(0) for viscous fluid when D¼ x¼ g¼ 0 with Cortell

[48] and Hayat et al. [45].

n Cortell [48] Hayat et al. [45] Present

0.0 0.627547 0.627555 0.627498
0.2 0.766758 0.766837 0.767066
0.5 0.889477 0.889544 0.892366
0.75 0.953786 0.953975 0.956365
1.0 1.000000 1.000000 1.002125
1.5 1.061587 1.066160 1.063424
3.0 1.148588 1.148593 1.150085
7.0 1.216847 1.216850 1.218111
10.0 1.234875 1.234875 1.236074
20.0 1.257418 1.257424 1.258574
100.0 1.276768 1.276774 1.277862
N – – 1.282887
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calculated the value of q(0)¼ 1.022866 which is in agreement with
q(0)¼ 1.02151 of Cortell [43]. This close agreement validates the
accuracy of the present code.

In order to verify the effect of the integration step size Dh, we
tested the code with three different step sizes namely; Dh¼ 0.001,
Dh¼ 0.002, and Dh¼ 0.003. In each case, we found excellent
agreement among the results. Fig. 2(a)–(c), respectively, show the
velocity, the microrotation, and the temperature profiles for the
three step sizes. The results for the three different step sizes are
graphically indistinguishable. It was found that Dh¼ 0.001
provided sufficiently accurate results and further refinement of the
grid size was therefore not warranted.
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Fig. 2. (a) Velocity, (b) microrotation, and (c) tem
4. Results and discussion

For the purpose of discussing the results, the numerical calcu-
lations are presented in the form of non-dimensional velocity,
microrotation and temperature profiles. In these calculations, the
values of the buoyancy parameter g, Prandtl number Pr, magnetic
field parameter M, angle of inclination a, temperature dependent
heat source (or sink) parameter Q, surface dependent heat gener-
ation (or sink) parameter Q*, vortex viscosity parameter D, and
microrotation parameter n were varied. The choice of the values of
the parameters was dictated by the values chosen by the previous
investigators. Because of the lack of experimental data for micro-
inertia density parameter and vortex viscosity parameter, suitable
representative values were chosen in order to determine the polar
effects on the flow characteristics. In the simulation the values of
the Prandtl number are chosen as 0.73, 2.97, 4.24 and 7 those
correspond to air, methyl chloride, sulfur dioxide, and water,
respectively. The default values of the other parameters are
mentioned in Fig. 2.

Fig. 3(a) shows the velocity profiles for different values of
Prandtl number Pr for a cooled plate. As the Prandtl number
increases, viscous forces tend to suppress the buoyancy forces and
cause the velocity in the hydrodynamic boundary layer to decrease.
For small Pr, the boundary layer is thick. For large Pr values the
velocity is found to decrease monotonically and the boundary layer
thickness is seen to decrease. It is also observed that the maximum
values of the velocity are 1.5357, 0.7729, 0.6522 and 0.5143 for
Pr¼ 0.73, 2.97, 4.24 and 7.0, respectively, and occur at h¼ 0.953,
0.950, 0.960 and 0.976, respectively. It is seen that the maximum
η
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Fig. 6. Variations of non-dimensional (a) velocity (b) microrotation and (c) tempera-
ture profiles for different values of Q and Q*.
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Table 2
Values of C*

f and Nu*
x for various values of M.

M Micropolar fluid Newtonian fluid

C*
f Nu*

x C*
f Nu*

x

VEC CEC VEC CEC VEC CEC VEC CEC

0.0 4.2427 4.2427 0.6841 0.6841 8.9889 8.9889 0.8957 0.8957
0.2 4.1950 4.2079 0.6740 0.6768 8.8172 8.8925 0.8763 0.8847
0.5 4.1352 4.1606 0.6607 0.6665 8.6125 8.7603 0.8511 0.8690
0.8 4.0859 4.1185 0.6493 0.6570 8.4527 8.6410 0.8296 0.8541
1.0 4.0574 4.0927 0.6424 0.6509 8.3641 8.5679 0.8169 0.8446
1.5 3.9973 4.0353 0.6270 0.6371 8.1869 8.4042 0.7892 0.8223
2.0 3.9488 3.9859 0.6139 0.6245 8.0533 8.2640 0.7661 0.8019
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velocity decreases by 66.5% when Pr increases from 0.73 to 7.0.
Fig. 3(b) shows the microrotation profiles for the various values of
the Prandtl number Pr. From this figure it can be seen that when the
plate is cooled, microrotation increases with the increase in Prandtl
number. It is also observed that away from the plate (h� 1.5) these
profiles overlap. Fig. 3(c) shows the effect of Prandtl number on the
temperature profiles. This figure reveals that the effects of the
Prandtl number on the thermal boundary layer are similar to those
found in the hydrodynamic boundary layer. Furthermore, the
maximum values of the temperature are observed to be 1.6289,
1.0145, 0.9143 and 0.7952 for Pr¼ 0.73, 2.97, 4.24 and 7.0, respec-
tively and they all occur at the surface of the plate. The maximum
temperature decreases by 51.18% as Pr increases from 0.733 to 7.0.

Fig. 4(a)–(c), respectively, show the velocity, microrotation and
temperature profiles for different values of magnetic field param-
eter M. From Fig. 4(a) we note that the velocity decreases with the
increase of the magnetic field parameter indicating that the
magnetic field tends to retard the convective motion of the fluid.
This effect is stronger near the surface of the plate. From Fig. 4(b)
we see that very close to the plate h� 1, microrotation increases
with the increase of the magnetic field parameter. As we move
away from the plate, the effect of M becomes less pronounced.
Fig. 4(c) reveals that the temperature in the thermal boundary layer
increases with the increase of M. This is due to the fact that the
magnetic field tends to retard the velocity field, which in turn
reduces the heat transfer. This is manifested with higher temper-
atures in the thermal boundary layer. These results clearly
demonstrate that the magnetic field can be used as a means of
controlling the flow and heat transfer characteristics.

The effect of the angle of inclination a on the velocity field is
shown in Fig. 5(a). From this figure we see that the velocity
decreases with the increase of a. As a increases, the effect of the
buoyancy force decreases because of the multiplication factor cosa

and the velocities decrease. Fig. 5(b) shows the effect of a in the
microrotation profiles. We observe that the angle of inclination
a strongly affects the microrotation near the plate surface. Away
from the plate, however, the microrotation profiles are minimally
affected by the angle of inclination. Fig. 5(c) shows that as the angle
of inclination increases, the thermal boundary layer thickens and
the temperatures rise.

Fig. 6(a)–(c), respectively, shows the velocity, microrotation and
temperature profiles for different values of temperature dependent
and surface dependent heat source (or sink) parameters Q and Q*.
Positive values of Q and Q* represent the heat source i.e. heat
generation in the fluid and negative values of Q and Q* represent
the heat sink or heat absorption in the fluid. From Fig. 6(a) it is
observed that when the heat is generated (Q,Q*> 0) the buoyancy
force increases giving rise to higher velocities in the boundary layer.



Table 4
Values of C*

f and Nu*
x for various values of Q and Q*.

Q* Q Micropolar fluid Newtonian fluid

C*
f Nu*

x C*
f Nu*

x

VEC CEC VEC CEC VEC CEC VEC CEC

0.5 0.0 3.2631 3.2694 0.7475 0.7495 6.9857 7.1438 0.8892 0.9115
0.5 0.2 3.5160 3.5364 0.6931 0.6983 7.3842 7.5670 0.8395 0.8670
0.5 0.5 3.9488 3.9859 0.6139 0.6245 8.0533 8.2640 0.7661 0.8019
0.5 0.8 4.4529 4.4978 0.5389 0.5552 8.8181 9.0403 0.6945 0.7391
0.5 1.0 4.8320 4.8756 0.4919 0.5119 9.3865 9.6046 0.6484 0.6988

0.0 0.5 3.4170 3.4248 0.7072 0.7109 7.0045 7.1110 0.8818 0.9066
0.2 0.5 3.6409 3.6602 0.6655 0.6725 7.4456 7.5944 0.8301 0.8601
0.5 0.5 3.9488 3.9859 0.6139 0.6245 8.0533 8.2640 0.7661 0.8019
0.8 0.5 4.2313 4.2862 0.5718 0.5851 8.6119 8.8826 0.7138 0.7536
1.0 0.5 4.4083 4.4751 0.5477 0.5623 8.9627 9.2726 0.6839 0.7257

�0.5 0.0 2.1078 2.0475 1.0728 1.0539 4.7629 4.7003 1.2534 1.2427
�0.5 �0.2 1.9066 1.8318 1.1605 1.1404 4.4524 4.3614 1.3279 1.3133
�0.5 �0.5 1.6536 1.5612 1.2893 1.2691 4.0470 3.9172 1.4372 1.4189
�0.5 �0.8 1.4486 1.3453 1.4132 1.3945 3.7023 3.5188 1.5431 1.5132
�0.5 �1.0 1.3336 1.2264 1.4927 1.4754 3.3500 3.3027 1.6116 1.5913

0.0 �0.5 2.5656 2.1890 1.0417 1.0299 5.1898 5.1626 1.1780 1.8717
�0.2 �0.5 2.0355 1.9564 1.1255 1.1101 4.7634 4.6917 1.2679 1.2602
�0.5 �0.5 1.6536 1.5612 1.2893 1.2691 4.0470 3.9172 1.4372 1.4189
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However, when heat absorption occurs, the buoyancy force
decreases and the flow velocities are reduced. Fig. 6(b) shows that
as Q and Q* increases, the microrotation decreases. When heat
generation occurs in the fluid, one would expect the temperature in
the thermal boundary layer to increase. This corroborated by
Fig. 6(c) where it is seen that the temperatures do indeed increase
as Q and Q* increases.

Fig. 7(a) shows the velocity profiles for different values of
microrotation parameter, n. The increase in n results higher flow
velocities. Thus the flow is more vigorous in a strongly concen-
trated micropolar fluid compared with the flow in a weakly
concentrated micropolar fluid. Fig. 7(b) shows the microrotation
profiles for different values of n. For n¼ 0, microrotation remains
slightly positive throughout the boundary layer. As n increases,
microrotation becomes progressively more negative. The effect is
strongest near the plate and diminishes in the far flow field.
Fig. 7(c) shows that temperature field is not significantly affected
by n.

In Table 2 we present skin-friction coefficient and rate of heat
transfer of micropolar fluid and compare them with the results for
a Newtonian fluid for various values of the magnetic field param-
eter for the cases of variable fluid electric conductivity (VEC) as well
as of constant fluid electric conductivity (CEC). From this table it is
clear that both the skin-friction and heat transfer rate are higher for
the case of CEC than for the VEC for the micropolar as well as the
Newtonian fluid. It is also worth noting that compared with the
Newtonian fluid; the skin friction values as well as heat transfer
rate for a micropolar fluid are smaller.

Table 3 shows the skin-friction coefficient and rate of heat
transfer of micropolar fluid in comparison with the Newtonian fluid
for various values of the angle of inclination a for the cases of
variable fluid electric conductivity (VEC) as well as of constant fluid
electric conductivity (CEC). This table reveals that skin-friction
coefficient as well as rate of heat transfer decreases with the
increase of a in both the cases of VEC and CEC. It is also notable that
values of these physical parameters are markedly less for a micro-
polar fluid than the Newtonian fluid.

In Table 4 we present skin-friction coefficient and rate of heat
transfer of micropolar fluid in comparison with the Newtonian fluid
for various values of the temperature dependent heat source (or
sink) parameter (Q) and space dependent heat source (or sink)
parameter (Q*) for the cases of variable fluid electric conductivity
(VEC) as well as of constant fluid electric conductivity (CEC). This
table shows that skin-friction coefficients corresponding to VEC
case are smaller than those of CEC for all increasing values of Q and
Q*. When Q increases from 0 to 1 skin-friction coefficient for
micropolar fluid increases by 48% (for the case of VEC) and 49% (for
the case of CEC) while for similar increase of Q* the corresponding
change in skin-friction coefficient is 29% (for case of VEC) and 31%
(for the case of CEC). For a Newtonian fluid, the values of the skin-
friction coefficient are higher than those values of the micropolar
fluid. But the rate of increase of skin-friction coefficient for New-
tonian fluid is lower compared to the micropolar fluid when Q and
Table 3
Values of C*

f and Nu*
x for various values of a.

a (in degree) Micropolar fluid Newtonian fluid

C*
f Nu*

x C*
f Nu*

x

VEC CEC VEC CEC VEC CEC VEC CEC

0 4.2424 4.2932 0.6403 0.6536 8.6944 8.9544 0.7970 0.8377
30 3.9488 3.9859 0.6139 0.6245 8.0533 8.2640 0.7661 0.8019
45 3.5731 3.5942 0.5777 0.5848 7.2353 7.3869 0.7238 0.7529
60 3.0215 3.0233 0.5188 0.5201 6.0401 6.1152 0.6550 0.6733
Q* both increases from 0 to 1. Table 4 also depicts that rate of heat
transfer from the inclined surface to the micropolar fluid reduces by
34% (for the case of VEC) and 32% (for the case of CEC) when Q
increases from 0 to 1 whereas this reduction is 23% (for the case of
VEC) and 21% (for the case of CEC) when Q* increases from 0 to 1.
But for a Newtonian fluid the rate of heat transfer decreases by 27%
(for the case of VEC) and 23% (for the case of CEC) when Q changes
from 0 to 1. Similarly rate of heat transfer decreases by 22% (for the
case of VEC) and 17% (for the case of CEC) when Q* increases from
0 to 1. This table clearly demonstrates that rate of heat transfer
strongly depends on the temperature dependent heat source
parameter than the space dependent heat source parameter. The
opposite effect observed for the case of heat absorption.
5. Conclusions

In this paper numerical simulations have been carried out for
the two-dimensional steady boundary layer equations for hydro-
magnetic convective heat transfer flow of micropolar fluid flowing
along a heated inclined flat plate with variable electric conductivity
and uniform surface heat flux in the presence of non-uniform heat
source (or sink). Using the conventional similarity transformations,
the governing partial differential equations have been transformed
into non-linear, coupled ordinary differential equations and are
solved to obtain locally similar solutions using Nachtsheim–
Swigert shooting iteration technique combined with a sixth order
Runge–Kutta initial value solver.

We investigated how the flow field, angular velocity (micro-
rotation) of the micro-constituents and temperature field are
affected by the variations of the Prandtl number Pr, magnetic field
parameter M, heat source (or sink) parameters Q and Q*, angle of
inclination a, and microrotation parameter n and discussed the
results. From the present simulations the final remarks can be listed
as

1. Skin-friction coefficient (viscous drag) decreases mono-
tonically with the increase of the magnetic field parameter M
and the angle of inclination a whereas it increases with the
increase of the temperature dependent heat source parameter
Q and surface dependent heat source parameter Q*.



M.M. Rahman et al. / International Journal of Thermal Sciences 48 (2009) 2331–23402340
2. The Nusselt number (rate of heat transfer) decreases with the
increase of the magnetic field parameter M, temperature
dependent heat source parameter Q and surface dependent
heat source parameter Q*, and angle of inclination a.

3. Effect of the temperature dependent heat source parameter Q
on the skin-friction coefficient and rate of heat transfer is
stronger than the corresponding effect of the surface depen-
dent heat source parameter Q*.

4. Space and temperature dependent heat absorption are better
suited for cooling purposes.

5. Values of the skin-friction coefficient and Nusselt number are
higher for the case of constant fluid electric conductivity than
the case of variable fluid electric conductivity.

6. The effects of the fluid electric conductivity and non-uniform
heat generation on the micropolar fluid are less pronounced
compared with the Newtonian fluid.
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